Search results

SQL

When you run a query via SQL over the MySQL protocol, you receive the requested columns as a result or an empty result set if nothing is found.

‹›
  • SQL
SQL
📋
SELECT * FROM tbl;
‹›
Response
+------+------+--------+
| id   | age  | name   |
+------+------+--------+
|    1 |   25 | joe    |
|    2 |   25 | mary   |
|    3 |   33 | albert |
+------+------+--------+
3 rows in set (0.00 sec)

Additionally, you can use the SHOW META call to see extra meta-information about the latest query.

‹›
  • SQL
SQL
📋
SELECT id,story_author,comment_author FROM hn_small WHERE story_author='joe' LIMIT 3; SHOW META;
‹›
Response
++--------+--------------+----------------+
| id     | story_author | comment_author |
+--------+--------------+----------------+
| 152841 | joe          | SwellJoe       |
| 161323 | joe          | samb           |
| 163735 | joe          | jsjenkins168   |
+--------+--------------+----------------+
3 rows in set (0.01 sec)

+----------------+-------+
| Variable_name  | Value |
+----------------+-------+
| total          | 3     |
| total_found    | 20    |
| total_relation | gte   |
| time           | 0.010 |
+----------------+-------+
4 rows in set (0.00 sec)

In some cases, such as when performing a faceted search, you may receive multiple result sets as a response to your SQL query.

‹›
  • SQL
SQL
📋
SELECT * FROM tbl WHERE MATCH('joe') FACET age;
‹›
Response
+------+------+
| id   | age  |
+------+------+
|    1 |   25 |
+------+------+
1 row in set (0.00 sec)

+------+----------+
| age  | count(*) |
+------+----------+
|   25 |        1 |
+------+----------+
1 row in set (0.00 sec)

In case of a warning, the result set will include a warning flag, and you can see the warning using SHOW WARNINGS.

‹›
  • SQL
SQL
📋
SELECT * from tbl where match('"joe"/3'); show warnings;
‹›
Response
+------+------+------+
| id   | age  | name |
+------+------+------+
|    1 |   25 | joe  |
+------+------+------+
1 row in set, 1 warning (0.00 sec)

+---------+------+--------------------------------------------------------------------------------------------+
| Level   | Code | Message                                                                                    |
+---------+------+--------------------------------------------------------------------------------------------+
| warning | 1000 | quorum threshold too high (words=1, thresh=3); replacing quorum operator with AND operator |
+---------+------+--------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)

If your query fails, you will receive an error:

‹›
  • SQL
SQL
📋
SELECT * from tbl where match('@surname joe');
‹›
Response
ERROR 1064 (42000): index idx: query error: no field 'surname' found in schema

HTTP

Via the HTTP JSON interface, the query result is sent as a JSON document. Example:

{
  "took":10,
  "timed_out": false,
  "hits":
  {
    "total": 2,
    "hits":
    [
      {
        "_id": "1",
        "_score": 1,
        "_source": { "gid": 11 }
      },
      {
        "_id": "2",
        "_score": 1,
        "_source": { "gid": 12 }
      }
    ]
  }
}
  • took: time in milliseconds it took to execute the search
  • timed_out: whether the query timed out or not
  • hits: search results, with the following properties:
    • total: total number of matching documents
    • hits: an array containing matches

The query result can also include query profile information. See Query profile.

Each match in the hits array has the following properties:

  • _id: match id
  • _score: match weight, calculated by the ranker
  • _source: an array containing the attributes of this match

Source selection

By default, all attributes are returned in the _source array. You can use the _source property in the request payload to select the fields you want to include in the result set. Example:

{
  "index":"test",
  "_source":"attr*",
  "query": { "match_all": {} }
}

You can specify the attributes you want to include in the query result as a string ("_source": "attr*") or as an array of strings ("_source": [ "attr1", "attri*" ]"). Each entry can be an attribute name or a wildcard (*, % and ? symbols are supported).

You can also explicitly specify which attributes you want to include and which to exclude from the result set using the includes and excludes properties:

"_source":
{
  "includes": [ "attr1", "attri*" ],
  "excludes": [ "*desc*" ]
}

An empty list of includes is interpreted as "include all attributes," while an empty list of excludes does not match anything. If an attribute matches both the includes and excludes, then the excludes win.

Filters

WHERE

WHERE is an SQL clause that works for both full-text matching and additional filtering. The following operators are available:

MATCH('query') is supported and maps to a full-text query.

The {col_name | expr_alias} [NOT] IN @uservar condition syntax is supported. Refer to the SET syntax for a description of global user variables.

HTTP JSON

If you prefer the HTTP JSON interface, you can also apply filtering. It might seem more complex than SQL, but it is recommended for cases when you need to prepare a query programmatically, such as when a user fills out a form in your application.

Here's an example of several filters in a bool query.

This full-text query matches all documents containing product in any field. These documents must have a price greater than or equal to 500 (gte) and less than or equal to 1000 (lte). All of these documents must not have a revision less than 15 (lt).

‹›
  • JSON
JSON
📋
POST /search
{
  "index": "test1",
  "query": {
    "bool": {
      "must": [
        { "match" : { "_all" : "product" } },
        { "range": { "price": { "gte": 500, "lte": 1000 } } }
      ],
      "must_not": {
        "range": { "revision": { "lt": 15 } }
      }
    }
  }
}

bool query

The bool query matches documents based on boolean combinations of other queries and/or filters. Queries and filters must be specified in must, should, or must_not sections and can be nested.

‹›
  • JSON
JSON
📋
POST /search
{
  "index":"test1",
  "query": {
    "bool": {
      "must": [
        { "match": {"_all":"keyword"} },
        { "range": { "revision": { "gte": 14 } } }
      ]
    }
  }
}

must

Queries and filters specified in the must section are required to match the documents. If multiple fulltext queries or filters are specified, all of them must match. This is the equivalent of AND queries in SQL. Note that if you want to match against an array (multi-value attribute), you can specify the attribute multiple times. The result will be positive only if all the queried values are found in the array, e.g.:

"must": [
  {"equals" : { "product_codes": 5 }},
  {"equals" : { "product_codes": 6 }}
]

Note also, it may be better in terms of performance to use:

  {"in" : { "all(product_codes)": [5,6] }}

(see details below).

should

Queries and filters specified in the should section should match the documents. If some queries are specified in must or must_not, should queries are ignored. On the other hand, if there are no queries other than should, then at least one of these queries must match a document for it to match the bool query. This is the equivalent of OR queries. Note, if you want to match against an array (multi-value attribute) you can specify the attribute multiple times, e.g.:

"should": [
  {"equals" : { "product_codes": 7 }},
  {"equals" : { "product_codes": 8 }}
]

Note also, it may be better in terms of performance to use:

  {"in" : { "any(product_codes)": [7,8] }}

(see details below).

must_not

Queries and filters specified in the must_not section must not match the documents. If several queries are specified under must_not, the document matches if none of them match.

‹›
  • JSON
JSON
📋
POST /search
{
  "index":"t",
  "query": {
    "bool": {
      "should": [
        {
          "equals": {
            "b": 1
          }
        },
        {
          "equals": {
            "b": 3
          }
        }
      ],
      "must": [
        {
          "equals": {
            "a": 1
          }
        }
      ],
      "must_not": {
        "equals": {
          "b": 2
        }
      }
    }
  }
}

Nested bool query

A bool query can be nested inside another bool so you can make more complex queries. To make a nested boolean query just use another bool instead of must, should or must_not. Here is how this query:

a = 2 and (a = 10 or b = 0)

should be presented in JSON.

‹›
  • JSON
JSON
📋

a = 2 and (a = 10 or b = 0)

POST /search
{
  "index":"t",
  "query": {
    "bool": {
      "must": [
        {
          "equals": {
            "a": 2
          }
        },
        {
          "bool": {
            "should": [
              {
                "equals": {
                  "a": 10
                }
              },
              {
                "equals": {
                  "b": 0
                }
              }
            ]
          }
        }
      ]
    }
  }
}

More complex query:

(a = 1 and b = 1) or (a = 10 and b = 2) or (b = 0)
‹›
  • JSON
JSON
📋

(a = 1 and b = 1) or (a = 10 and b = 2) or (b = 0)

POST /search
{
  "index":"t",
  "query": {
    "bool": {
      "should": [
        {
          "bool": {
            "must": [
              {
                "equals": {
                  "a": 1
                }
              },
              {
                "equals": {
                  "b": 1
                }
              }
            ]
          }
        },
        {
          "bool": {
            "must": [
              {
                "equals": {
                  "a": 10
                }
              },
              {
                "equals": {
                  "b": 2
                }
              }
            ]
          }
        },
        {
          "bool": {
            "must": [
              {
                "equals": {
                  "b": 0
                }
              }
            ]
          }

        }
      ]
    }
  }
}

Queries in SQL format

Queries in SQL format (query_string) can also be used in bool queries.

‹›
  • JSON
JSON
📋
POST /search
{
  "index": "test1",
  "query": {
    "bool": {
      "must": [
        { "query_string" : "product" },
        { "query_string" : "good" }
      ]
    }
  }
}

Various filters

Equality filters

Equality filters are the simplest filters that work with integer, float and string attributes.

‹›
  • JSON
JSON
📋
POST /search
{
  "index":"test1",
  "query": {
    "equals": { "price": 500 }
  }
}

Filter equals can be applied to a multi-value attribute and you can use:

  • any() which will be positive if the attribute has at least one value which equals to the queried value;
  • all() which will be positive if the attribute has a single value and it equals to the queried value
‹›
  • JSON
JSON
📋
POST /search
{
  "index":"test1",
  "query": {
    "equals": { "any(price)": 100 }
  }
}

Set filters

Set filters check if attribute value is equal to any of the values in the specified set.

Set filters support integer, string and multi-value attributes.

‹›
  • JSON
JSON
📋
POST /search
{
  "index":"test1",
  "query": {
    "in": {
      "price": [1,10,100]
    }
  }
}

When applied to a multi-value attribute you can use:

  • any() (equivalent to no function) which will be positive if there's at least one match between the attribute values and the queried values;
  • all() which will be positive if all the attribute values are in the queried set
‹›
  • JSON
JSON
📋
POST /search
{
  "index":"test1",
  "query": {
    "in": {
      "all(price)": [1,10]
    }
  }
}

Range filters

Range filters match documents that have attribute values within a specified range.

Range filters support the following properties:

  • gte: greater than or equal to
  • gt: greater than
  • lte: less than or equal to
  • lt: less than
‹›
  • JSON
JSON
📋
POST /search
{
  "index":"test1",
  "query": {
    "range": {
      "price": {
        "gte": 500,
        "lte": 1000
      }
    }
  }
}

Geo distance filters

geo_distance filters are used to filter the documents that are within a specific distance from a geo location.

location_anchor

Specifies the pin location, in degrees. Distances are calculated from this point.

location_source

Specifies the attributes that contain latitude and longitude.

distance_type

Specifies distance calculation function. Can be either adaptive or haversine. adaptive is faster and more precise, for more details see GEODIST(). Optional, defaults to adaptive.

distance

Specifies the maximum distance from the pin locations. All documents within this distance match. The distance can be specified in various units. If no unit is specified, the distance is assumed to be in meters. Here is a list of supported distance units:

  • Meter: m or meters
  • Kilometer: km or kilometers
  • Centimeter: cm or centimeters
  • Millimeter: mm or millimeters
  • Mile: mi or miles
  • Yard: yd or yards
  • Feet: ft or feet
  • Inch: in or inch
  • Nautical mile: NM, nmi or nauticalmiles

location_anchor and location_source properties accept the following latitude/longitude formats:

  • an object with lat and lon keys: { "lat": "attr_lat", "lon": "attr_lon" }
  • a string of the following structure: "attr_lat, attr_lon"
  • an array with the latitude and longitude in the following order: [attr_lon, attr_lat]

Latitude and longitude are specified in degrees.

‹›
  • Basic example
  • Advanced example
📋
POST /search
{
  "index":"test",
  "query": {
    "geo_distance": {
      "location_anchor": {"lat":49, "lon":15},
      "location_source": {"attr_lat, attr_lon"},
      "distance_type": "adaptive",
      "distance":"100 km"
    }
  }
}

Expressions in search

Manticore enables the use of arbitrary arithmetic expressions through both SQL and HTTP, incorporating attribute values, internal attributes (document ID and relevance weight), arithmetic operations, several built-in functions, and user-defined functions. Below is the complete reference list for quick access.

Arithmetic operators

+, -, *, /, %, DIV, MOD

Standard arithmetic operators are available. Arithmetic calculations involving these operators can be executed in three different modes:

  1. using single-precision, 32-bit IEEE 754 floating point values (default),
  2. using signed 32-bit integers,
  3. using 64-bit signed integers.

The expression parser automatically switches to integer mode if no operations result in a floating point value. Otherwise, it uses the default floating point mode. For example, a+b will be computed using 32-bit integers if both arguments are 32-bit integers; or using 64-bit integers if both arguments are integers but one of them is 64-bit; or in floats otherwise. However, a/b or sqrt(a) will always be computed in floats, as these operations return a non-integer result. To avoid this, you can use IDIV(a,b) or a DIV b form. Additionally, a*b will not automatically promote to 64-bit when arguments are 32-bit. To enforce 64-bit results, use BIGINT(), but note that if non-integer operations are present, BIGINT() will simply be ignored.

Comparison operators

<, > <=, >=, =, <>

The comparison operators return 1.0 when the condition is true and 0.0 otherwise. For example, (a=b)+3 evaluates to 4 when attribute a is equal to attribute b, and to 3 when a is not. Unlike MySQL, the equality comparisons (i.e., = and <> operators) include a small equality threshold (1e-6 by default). If the difference between the compared values is within the threshold, they are considered equal.

For string attributes, only the equality operator is supported, and using other operators will result in a syntax error.

The BETWEEN and IN operators, in the case of multi-value attributes, return true if at least one value matches the condition (similar to ANY()). The IN operator does not support JSON attributes. The IS (NOT) NULL operator is supported only for JSON attributes.

Boolean operators

AND, OR, NOT

Boolean operators (AND, OR, NOT) behave as expected. They are left-associative and have the lowest priority compared to other operators. NOT has higher priority than AND and OR but still less than any other operator. AND and OR share the same priority, so using parentheses is recommended to avoid confusion in complex expressions.

Bitwise operators

&, |

These operators perform bitwise AND and OR respectively. The operands must be of integer types.

Functions:

Expressions in HTTP JSON

In the HTTP JSON interface, expressions are supported via script_fields and expressions.

script_fields

{
    "index": "test",
    "query": {
        "match_all": {}
    }, "script_fields": {
        "add_all": {
            "script": {
                "inline": "( gid * 10 ) | crc32(title)"
            }
        },
        "title_len": {
            "script": {
                "inline": "crc32(title)"
            }
        }
    }
}

In this example, two expressions are created: add_all and title_len. The first expression calculates ( gid * 10 ) | crc32(title) and stores the result in the add_all attribute. The second expression calculates crc32(title) and stores the result in the title_len attribute.

Currently, only inline expressions are supported. The value of the inline property (the expression to compute) has the same syntax as SQL expressions.

The expression name can be utilized in filtering or sorting.

‹›
  • script_fields
script_fields
📋
{
    "index":"movies_rt",
    "script_fields":{
        "cond1":{
            "script":{
                "inline":"actor_2_facebook_likes =296 OR movie_facebook_likes =37000"
            }
        },
        "cond2":{
            "script":{
                "inline":"IF (IN (content_rating,'TV-PG','PG'),2, IF(IN(content_rating,'TV-14','PG-13'),1,0))"
            }
        }
    },
    "limit":10,
    "sort":[
        {
            "cond2":"desc"
        },
        {
            "actor_1_name":"asc"
        },
        {
            "actor_2_name":"desc"
        }
    ],
    "profile":true,
    "query":{
        "bool":{
            "must":[
                {
                    "match":{
                        "*":"star"
                    }
                },
                {
                    "equals":{
                        "cond1":1
                    }
                }
            ],
            "must_not":[
                {
                    "equals":{
                        "content_rating":"R"
                    }
                }
            ]
        }
    }
}

By default, expression values are included in the _source array of the result set. If the source is selective (see Source selection), the expression name can be added to the _source parameter in the request. Note, the names of the expressions must be in lowercase.

expressions

expressions is an alternative to script_fields with a simpler syntax. The example request adds two expressions and stores the results into add_all and title_len attributes. Note, the names of the expressions must be in lowercase.

‹›
  • expressions
expressions
📋
{
  "index": "test",
  "query": { "match_all": {} },
  "expressions":
  {
      "add_all": "( gid * 10 ) | crc32(title)",
      "title_len": "crc32(title)"
  }
}