Faceted search is as essential function of a modern search application as autocomplete, spell correction and search keywords highlighting. Especially in E-commerce products.
It comes to the rescue when we deal with large amounts of data and various properties related to each other, whether it is size, color, manufacturer or something else. When querying large amounts of data search results often include large swaths of entries which does not fit user’s expectations. Faceted search allows an end-user to explicitly specify the dimensions that they want their search results to meet.
In Manticore Search there is an optimization that retains the result set of the original query and reuses it for each facet calculation. As the aggregations are applied to already calculated subset of documents they are fast and the total execution time can be in many cases only marginally bigger than the initial query. Facets can be added to any query and the facet can be any attribute or expression. A facet result contains the facet values along with the facet counts. Facets are available using SQL SELECT
statement by declaring them at the very end of the query.
The facet values can come from an attribute, JSON property from a JSON attribute or expression. Facet values can be also aliased, however the alias must be unique across all result sets (main query results set and other facets results sets). The facet value is taken from the aggregated attribute/expression, but it can also come from another attribute/expression.
FACET {expr_list} [BY {expr_list}] [ORDER BY {expr | FACET()} {ASC | DESC}] [LIMIT [offset,] count]
Multiple facet declarations need to be separated by an whitespace.
Facets can be defined in the aggs
node:
"aggs" :
{
"group name" :
{
"terms" :
{
"field":"attribute name"
}
}
}
group name
is an alias given to the aggregation, the field
value must contain the name of the attribute or expression we are faceting.
The result set will contain an aggregations
node with the returned facets, where key
is the aggregated value and doc_count
is the aggregation count.
"aggregations": {
"group name": {
"buckets": [
{
"key": 10,
"doc_count": 1019
},
{
"key": 9,
"doc_count": 954
},
{
"key": 8,
"doc_count": 1021
},
{
"key": 7,
"doc_count": 1011
},
{
"key": 6,
"doc_count": 997
}
]
}
}
- SQL
- HTTP
SELECT *, price AS aprice FROM facetdemo LIMIT 10 FACET price LIMIT 10 FACET brand_id LIMIT 5;
POST /search -d '
{
"index" : "facetdemo",
"query" : {"match_all" : {} },
"limit": 5,
"aggs" :
{
"group_property" :
{
"terms" :
{
"field":"price",
}
},
"group_brand_id" :
{
"terms" :
{
"field":"brand_id",
}
}
}
}
'
+------+-------+----------+---------------------+------------+-------------+---------------------------------------+------------+--------+
| id | price | brand_id | title | brand_name | property | j | categories | aprice |
+------+-------+----------+---------------------+------------+-------------+---------------------------------------+------------+--------+
| 1 | 306 | 1 | Product Ten Three | Brand One | Six_Ten | {"prop1":66,"prop2":91,"prop3":"One"} | 10,11 | 306 |
| 2 | 400 | 10 | Product Three One | Brand Ten | Four_Three | {"prop1":69,"prop2":19,"prop3":"One"} | 13,14 | 400 |
...
| 9 | 560 | 6 | Product Two Five | Brand Six | Eight_Two | {"prop1":90,"prop2":84,"prop3":"One"} | 13,14 | 560 |
| 10 | 229 | 9 | Product Three Eight | Brand Nine | Seven_Three | {"prop1":84,"prop2":39,"prop3":"One"} | 12,13 | 229 |
+------+-------+----------+---------------------+------------+-------------+---------------------------------------+------------+--------+
10 rows in set (0.00 sec)
+-------+----------+
| price | count(*) |
+-------+----------+
| 306 | 7 |
| 400 | 13 |
...
| 229 | 9 |
| 595 | 10 |
+-------+----------+
10 rows in set (0.00 sec)
+----------+----------+
| brand_id | count(*) |
+----------+----------+
| 1 | 1013 |
| 10 | 998 |
| 5 | 1007 |
| 8 | 1033 |
| 7 | 965 |
+----------+----------+
5 rows in set (0.00 sec)
{
"took": 3,
"timed_out": false,
"hits": {
"total": 10000,
"hits": [
{
"_id": "1",
"_score": 1,
"_source": {
"price": 197,
"brand_id": 10,
"brand_name": "Brand Ten",
"categories": [
10
]
}
},
...
{
"_id": "5",
"_score": 1,
"_source": {
"price": 805,
"brand_id": 7,
"brand_name": "Brand Seven",
"categories": [
11,
12,
13
]
}
}
]
},
"aggregations": {
"group_property": {
"buckets": [
{
"key": 1000,
"doc_count": 11
},
{
"key": 999,
"doc_count": 12
},
...
{
"key": 991,
"doc_count": 7
}
]
},
"group_brand_id": {
"buckets": [
{
"key": 10,
"doc_count": 1019
},
{
"key": 9,
"doc_count": 954
},
{
"key": 8,
"doc_count": 1021
},
{
"key": 7,
"doc_count": 1011
},
{
"key": 6,
"doc_count": 997
}
]
}
}
}
Data can be faceted by aggregating another attribute or expression. For example if the documents contain both the brand id and name, we can return in facet the brand names, but aggregate the brand ids. This can be done by using FACET {expr1} BY {expr2}
- SQL
SELECT * FROM facetdemo FACET brand_name by brand_id;
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
| id | price | brand_id | title | brand_name | property | j | categories |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
| 1 | 306 | 1 | Product Ten Three | Brand One | Six_Ten | {"prop1":66,"prop2":91,"prop3":"One"} | 10,11 |
| 2 | 400 | 10 | Product Three One | Brand Ten | Four_Three | {"prop1":69,"prop2":19,"prop3":"One"} | 13,14 |
....
| 19 | 855 | 1 | Product Seven Two | Brand One | Eight_Seven | {"prop1":63,"prop2":78,"prop3":"One"} | 10,11,12 |
| 20 | 31 | 9 | Product Four One | Brand Nine | Ten_Four | {"prop1":79,"prop2":42,"prop3":"One"} | 12,13,14 |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
20 rows in set (0.00 sec)
+-------------+----------+
| brand_name | count(*) |
+-------------+----------+
| Brand One | 1013 |
| Brand Ten | 998 |
| Brand Five | 1007 |
| Brand Nine | 944 |
| Brand Two | 990 |
| Brand Six | 1039 |
| Brand Three | 1016 |
| Brand Four | 994 |
| Brand Eight | 1033 |
| Brand Seven | 965 |
+-------------+----------+
10 rows in set (0.00 sec)
Facets can aggregate over expressions. A classic example is segmentation of price by certain ranges:
- SQL
- HTTP
SELECT * FROM facetdemo FACET INTERVAL(price,200,400,600,800) AS price_range ;
POST /search -d '
{
"index": "facetdemo2",
"query":
{
"match_all": {}
},
"expressions":
{
"price_range": "INTERVAL(price,200,400,600,800)"
},
"aggs":
{
"group_property":
{
"terms":
{
"field": "price_range"
}
}
}
}
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+-------------+
| id | price | brand_id | title | brand_name | property | j | categories | price_range |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+-------------+
| 1 | 306 | 1 | Product Ten Three | Brand One | Six_Ten | {"prop1":66,"prop2":91,"prop3":"One"} | 10,11 | 1 |
...
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+-------------+
20 rows in set (0.00 sec)
+-------------+----------+
| price_range | count(*) |
+-------------+----------+
| 0 | 1885 |
| 3 | 1973 |
| 4 | 2100 |
| 2 | 1999 |
| 1 | 2043 |
+-------------+----------+
5 rows in set (0.01 sec)
{
"took": 3,
"timed_out": false,
"hits": {
"total": 10000,
"hits": [
{
"_id": "1",
"_score": 1,
"_source": {
"price": 197,
"brand_id": 10,
"brand_name": "Brand Ten",
"categories": [
10
],
"price_range": 0
}
},
...
{
"_id": "20",
"_score": 1,
"_source": {
"price": 227,
"brand_id": 3,
"brand_name": "Brand Three",
"categories": [
12,
13
],
"price_range": 1
}
}
]
},
"aggregations": {
"group_property": {
"buckets": [
{
"key": 4,
"doc_count": 2100
},
{
"key": 3,
"doc_count": 1973
},
{
"key": 2,
"doc_count": 1999
},
{
"key": 1,
"doc_count": 2043
},
{
"key": 0,
"doc_count": 1885
}
]
}
}
}
Facets can aggregate over multi-level grouping, the result set being the same as the query would perform a multi-level grouping:
- SQL
SELECT *,INTERVAL(price,200,400,600,800) AS price_range FROM facetdemo
FACET price_range AS price_range,brand_name ORDER BY brand_name asc;
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+-------------+
| id | price | brand_id | title | brand_name | property | j | categories | price_range |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+-------------+
| 1 | 306 | 1 | Product Ten Three | Brand One | Six_Ten | {"prop1":66,"prop2":91,"prop3":"One"} | 10,11 | 1 |
...
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+-------------+
20 rows in set (0.00 sec)
+--------------+-------------+----------+
| fprice_range | brand_name | count(*) |
+--------------+-------------+----------+
| 1 | Brand Eight | 197 |
| 4 | Brand Eight | 235 |
| 3 | Brand Eight | 203 |
| 2 | Brand Eight | 201 |
| 0 | Brand Eight | 197 |
| 4 | Brand Five | 230 |
| 2 | Brand Five | 197 |
| 1 | Brand Five | 204 |
| 3 | Brand Five | 193 |
| 0 | Brand Five | 183 |
| 1 | Brand Four | 195 |
...
Facets support ORDER BY
clause as same as a standard query. Each facet can have it's or own ordering and the facet ordering doesn't affect in any way the ordering of the main result set, which is ordered by the main query's ORDER BY
. Sorting can be made on attribute name, count (using COUNT(*)
) or special FACET()
function can be used, which provides the aggregated data values.
- SQL
SELECT * FROM facetdemo
FACET brand_name BY brand_id ORDER BY FACET() ASC
FACET brand_name BY brand_id ORDER BY brand_name ASC
FACET brand_name BY brand_id order BY COUNT(*) DESC;
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
| id | price | brand_id | title | brand_name | property | j | categories |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
| 1 | 306 | 1 | Product Ten Three | Brand One | Six_Ten | {"prop1":66,"prop2":91,"prop3":"One"} | 10,11 |
...
| 20 | 31 | 9 | Product Four One | Brand Nine | Ten_Four | {"prop1":79,"prop2":42,"prop3":"One"} | 12,13,14 |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
20 rows in set (0.01 sec)
+-------------+----------+
| brand_name | count(*) |
+-------------+----------+
| Brand One | 1013 |
| Brand Two | 990 |
| Brand Three | 1016 |
| Brand Four | 994 |
| Brand Five | 1007 |
| Brand Six | 1039 |
| Brand Seven | 965 |
| Brand Eight | 1033 |
| Brand Nine | 944 |
| Brand Ten | 998 |
+-------------+----------+
10 rows in set (0.01 sec)
+-------------+----------+
| brand_name | count(*) |
+-------------+----------+
| Brand Eight | 1033 |
| Brand Five | 1007 |
| Brand Four | 994 |
| Brand Nine | 944 |
| Brand One | 1013 |
| Brand Seven | 965 |
| Brand Six | 1039 |
| Brand Ten | 998 |
| Brand Three | 1016 |
| Brand Two | 990 |
+-------------+----------+
10 rows in set (0.01 sec)
+-------------+----------+
| brand_name | count(*) |
+-------------+----------+
| Brand Six | 1039 |
| Brand Eight | 1033 |
| Brand Three | 1016 |
| Brand One | 1013 |
| Brand Five | 1007 |
| Brand Ten | 998 |
| Brand Four | 994 |
| Brand Two | 990 |
| Brand Seven | 965 |
| Brand Nine | 944 |
+-------------+----------+
10 rows in set (0.01 sec)
By default each facet result set is limited to 20 values. The number of facet values can be controlled with LIMIT
clause individually for each facet by providing either a number of values to return in format LIMIT count
or with an offset as LIMIT offset, count
.
The maximum facet values that can be returned is limited by the query's max_matches
setting. In case dynamic max_matches (limiting max_matches to offset+per page for better performance) is wanted to be implemented, it must be taken in account that a too low max_matches value can hurt the number of facet values. In this case, a minimum max_matches value should be used good enough to cover the number of facet values.
- SQL
- HTTP
SELECT * FROM facetdemo
FACET brand_name BY brand_id ORDER BY FACET() ASC LIMIT 0,1
FACET brand_name BY brand_id ORDER BY brand_name ASC LIMIT 2,4
FACET brand_name BY brand_id order BY COUNT(*) DESC LIMIT 4;
POST /search -d '
{
"index" : "facetdemo",
"query" : {"match_all" : {} },
"limit": 5,
"aggs" :
{
"group_property" :
{
"terms" :
{
"field":"price",
"size":1,
}
},
"group_brand_id" :
{
"terms" :
{
"field":"brand_id",
"size":3
}
}
}
}
'
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
| id | price | brand_id | title | brand_name | property | j | categories |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
| 1 | 306 | 1 | Product Ten Three | Brand One | Six_Ten | {"prop1":66,"prop2":91,"prop3":"One"} | 10,11 |
...
| 20 | 31 | 9 | Product Four One | Brand Nine | Ten_Four | {"prop1":79,"prop2":42,"prop3":"One"} | 12,13,14 |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
20 rows in set (0.01 sec)
+-------------+----------+
| brand_name | count(*) |
+-------------+----------+
| Brand One | 1013 |
+-------------+----------+
1 rows in set (0.01 sec)
+-------------+----------+
| brand_name | count(*) |
+-------------+----------+
| Brand Four | 994 |
| Brand Nine | 944 |
| Brand One | 1013 |
| Brand Seven | 965 |
+-------------+----------+
4 rows in set (0.01 sec)
+-------------+----------+
| brand_name | count(*) |
+-------------+----------+
| Brand Six | 1039 |
| Brand Eight | 1033 |
| Brand Three | 1016 |
+-------------+----------+
3 rows in set (0.01 sec)
{
"took": 3,
"timed_out": false,
"hits": {
"total": 10000,
"hits": [
{
"_id": "1",
"_score": 1,
"_source": {
"price": 197,
"brand_id": 10,
"brand_name": "Brand Ten",
"categories": [
10
]
}
},
...
{
"_id": "5",
"_score": 1,
"_source": {
"price": 805,
"brand_id": 7,
"brand_name": "Brand Seven",
"categories": [
11,
12,
13
]
}
}
]
},
"aggregations": {
"group_property": {
"buckets": [
{
"key": 1000,
"doc_count": 11
}
]
},
"group_brand_id": {
"buckets": [
{
"key": 10,
"doc_count": 1019
},
{
"key": 9,
"doc_count": 954
},
{
"key": 8,
"doc_count": 1021
}
]
}
}
}
When using SQL, a search with facets returns a multiple result sets response. The MySQL client/library/connector used must have support (most do) for multiple result sets in order to be able to access the facet result sets.
Internally, the FACET
is a shorthand for executing a multi-query where the first query contains the main search query and the rest of the queries in the batch have each a clustering. As in the case of multi-query, the common query optimization can kick-in for a faceted search, meaning the search query is executed only once and the facets operates on the search query result, each facet adding only a fraction of time to the total query time.
To check if the faceted search ran in an optimized mode can be seen in query log, where all the logged queries will contain a xN
string, where N
is the number of queries that ran in the optimized group or checking the output of SHOW META statement which will exhibit a multiplier
metric:
- SQL
SELECT * FROM facetdemo FACET brand_id FACET price FACET categories;
SHOW META LIKE 'multiplier';
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
| id | price | brand_id | title | brand_name | property | j | categories |
+------+-------+----------+---------------------+-------------+-------------+---------------------------------------+------------+
| 1 | 306 | 1 | Product Ten Three | Brand One | Six_Ten | {"prop1":66,"prop2":91,"prop3":"One"} | 10,11 |
...
+----------+----------+
| brand_id | count(*) |
+----------+----------+
| 1 | 1013 |
...
+-------+----------+
| price | count(*) |
+-------+----------+
| 306 | 7 |
...
+------------+----------+
| categories | count(*) |
+------------+----------+
| 10 | 2436 |
...
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| multiplier | 4 |
+---------------+-------+
1 row in set (0.00 sec)
One of the greatest features of Manticore Search is the ability to combine full-text searching with geo location. For example a retailer can offer a search where user looks for a product and the result set can tell which is the closest shop that has the product in stock so user can go in store and pick it up. A travel site can provide results based on a search limited to a certain area and results to be sorted by the distance from a point ('search museums near a hotel' for example).
To perform geo searching, a document needs to contain pairs of latitude/longitude coordinates. The coordinates can be stored as float attributes. If the document has multiple locations, they can be embedded in a JSON object as float pairs.
index myrt
{
...
rt_attr_float = lat
rt_attr_float = lon
...
}
The coordinates can be stored as degrees or radians.
To find out the distance between two points the GEODIST() function can be used. GEODIST
requires two pairs of coordinates as first four parameters.
A 5th parameter in a simplified JSON format can configure certain aspects of the function. By default, GEODIST
expects coordinates to be in radians, but in=degrees
can be added to allow using degrees at input. The coordinates for which we perform the geo distance must have same time (degrees or radians) as the ones stored in the index, otherwise results will be misleading.
The calculated distance is by default in meters, but with out
option it can be transformed to kilometers, feets or miles. Lastly, by default a calculation method called adaptive
is used. An alternative method based on haversine
algorithm is available, however this one is slower and less precise.
The result of the function - the distance - can be used in ORDER BY
clause to sort the results
SELECT *,GEODIST(40.7643929, -73.9997683, lat,lon, {in=degrees, out=miles}) AS distance FROM myindex WHERE MATCH('...') ORDER BY distance ASC, WEIGHT() DESC;
Or to limit the results to a radial area around the point:
SELECT *,GEODIST(40.7643929, -73.9997683, lat,lon, {in=degrees, out=miles}) AS distance FROM myindex WHERE MATCH('...') AND distance <1000 ORDER BY WEIGHT(), DISTANCE ASC;
Another geo search functionality is the ability to check if a location belongs to an area. A special function will construct a polygon object which is used in another function that test if a set of coordinates belongs to it or not.
For creating the polygon two functions are available:
- GEOPOLY2D() - creates a polygon that takes in account the Earth's curvature
- POLY2D() - creates a simple polygon in plain space
POLY2D
can be used for geo searches if the area has sides shorter than 500km (for 3-4 sides, for polygons with more sides lower values should be considered). For areas with longer sides usage of GEOPOLY2D
is mandatory for keeping results accurate. GEOPOLY2D
also expects coordinates as latitude/longitude pairs in degrees, using radians will provide results in plain space (like POLY2D
).
CONTAINS() expects at input a polygon and a set of coordinates and output 1
if the point is inside the polygon or 0
otherwise.
SELECT *,CONTAINS(GEOPOLY2D(40.76439, -73.9997, 42.21211, -73.999, 42.21211, -76.123, 40.76439, -76.123), 41.5445, -74.973) AS inside FROM myindex WHERE MATCH('...') AND inside=1;